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Outline

®Brief review of recent developments in metallic
glasses

®Examples:

=High-energy x-ray scattering: Micromechanics of
deformation of metallic-glass-matrix composites

=Resonant x-ray scattering: Structure of metallic
glasses

® Opportunities for using high-energy x-rays to
study amorphous alloys
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HOMOGENEQUS FLOW
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T. C. Hufnagel et al. Scripta Mat. 12, 1071 (2000)
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Metallic-glass-matrix composite
formed by precipitation of high melting-

Composite formed by point phase prior to casting of final
precipitation of dendritic ductile ‘;;;j*
intermetallic in metallic glass — \
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R. T. Ott et al., Mat. Res. Soc. Symp. Proc. 806, 361 (2004).



APS beamline 1-ID

E =80.72 keV

Spot size 150 x 150 uym
Camera length 975 mm

MAR 345 digital image plate
Specimen L =6 mm, D=3 mi

Incident Digital Image Plate
X-rays
Compression Rig
Uniaxial strain distorts “powder” i
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Microstrain
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Strains in the Ta particles as a function
of applied stress. The particles
experience elastic deformation
followed by yield at approximately 350
MPa. The increase in strain at ~1400
MPa is due to local yielding of the
metallic glass matrix. Notice that the
particles yield again in tension upon
unloading.

The von Mises effective stress
calculated from the measured principal
strains. The initial plastic flow of the
particles occurs with little strain
hardening due to the constraint of the
matrix. When local yielding of the matrix
occurs at ~1400 MPa, the particles
strain harden considerably.

R. T. Ott et al., Mat. Res. Soc. Symp. Proc. 806,
361 (2004)
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* The particles yield at ~400 MPa
* Local yielding of matrix occurs at ~1450 MPa
 Large-scale yielding (0.2% offset) occurs at higher stresses, ~1700 MPa

R.T. Ottetal.,
(unpublished)
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Figure | Structural building blocks. Twelve atoms surrounding a central one can form:a, a
cuboctahedral arrangement, as in a face-centred cubic crystal; or b, an icosahedral arcangement, as
found in a liquid. ¢, A ring formed by five tetrahedra sharing an edge, leaving a gap with an angle
of 7°. The work of Reichert ef al.' suggests that five-fold symmetry is ubiquitous in the structure of
liquids.

F. Spaepen, Nature 408, 781 (2000)

L. Cervinka, J. Non-Cryst. Sol. 156-158, 94 (1993)
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T. Schenk et al. Phys. Rev. Lett. 89, 075507 (2002)

D. B. Miracle Nature Mat..(2004) (in press)
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Zr-based glasses
containing Ta

Ta L, edge resonant scattering
inconclusive, but EXAFS also
suggests that there are no Ta-Ta
near-neighbor pairs.

. C. Hufnagel and S. Bre

r . Ta O Cu, Ni, or Al



Opportunities for high-energy x-rays

®Continued in situ studies of deformation of
composites (particle size, vol. fraction, nature of
reinforcement, single particle studies)

®Study deformation of single-phase glasses
(homogeneous deformation, or inhomogeneous
deformation in constrained loading)

®Studies of phase transformations in the bulk
(solidification, crystallization, spinodal
decomposition)

® Access to higher-energy absorption edges
(resonant scattering, EXAFS, XANES)

®Fluctuation x-ray microscopy (but need focusing
optics for high-energy x-rays)



